

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

4721/01

Core Mathematics 1
TUESDAY 16 JANUARY 2007

Morning

Time: 1 hour 30 minutes

TUESDAY 16 JANUARY 200

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

WARNING

You are not allowed to use a calculator in this paper.

This document consists of 4 printed pages.

© OCR 2007 [Y/102/2693]

OCR is an exempt Charity

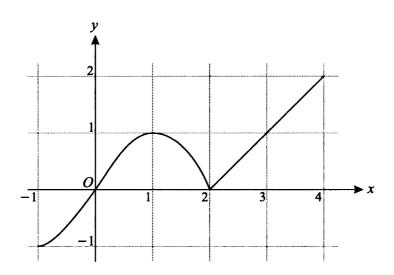
[Turn over

1 Express
$$\frac{5}{2-\sqrt{3}}$$
 in the form $a+b\sqrt{3}$, where a and b are integers. [3]

2 Evaluate

(i)
$$6^0$$
, [1]

(ii)
$$2^{-1} \times 32^{\frac{4}{5}}$$
. [3]


3 Solve the inequalities

(i)
$$3(x-5) \le 24$$
, [2]

(ii)
$$5x^2 - 2 > 78$$
. [3]

4 Solve the equation $x^{\frac{2}{3}} + 3x^{\frac{1}{3}} - 10 = 0$. [5]

5

The graph of y = f(x) for $-1 \le x \le 4$ is shown above.

(i) Sketch the graph of
$$y = -f(x)$$
 for $-1 \le x \le 4$. [2]

- (ii) The point P(1, 1) on y = f(x) is transformed to the point Q on y = 3f(x). State the coordinates of Q.
- (iii) Describe the transformation which transforms the graph of y = f(x) to the graph of y = f(x + 2). [2]

6 (i) Express
$$2x^2 - 24x + 80$$
 in the form $a(x - b)^2 + c$. [4]

- (ii) State the equation of the line of symmetry of the curve $y = 2x^2 24x + 80$. [1]
- (iii) State the equation of the tangent to the curve $y = 2x^2 24x + 80$ at its minimum point. [1]

© OCR 2007 4721/01 Jan07

7	Find $\frac{dy}{dx}$	in each of the	e following	cases.
---	----------------------	----------------	-------------	--------

(i)
$$y = 5x + 3$$

(ii)
$$y = \frac{2}{x^2}$$
 [3]

(iii)
$$y = (2x+1)(5x-7)$$
 [4]

- 8 (i) Find the coordinates of the stationary points of the curve $y = 27 + 9x 3x^2 x^3$. [6]
 - (ii) Determine, in each case, whether the stationary point is a maximum or minimum point. [3]
 - (iii) Hence state the set of values of x for which $27 + 9x 3x^2 x^3$ is an increasing function. [2]
- 9 A is the point (2, 7) and B is the point (-1, -2).
 - (i) Find the equation of the line through A parallel to the line y = 4x 5, giving your answer in the form y = mx + c.
 - (ii) Calculate the length of AB, giving your answer in simplified surd form. [3]
 - (iii) Find the equation of the line which passes through the mid-point of AB and which is perpendicular to AB. Give your answer in the form ax + by + c = 0, where a, b and c are integers. [6]
- 10 A circle has equation $x^2 + y^2 + 2x 4y 8 = 0$.
 - (i) Find the centre and radius of the circle. [3]
 - (ii) The circle passes through the point (-3, k), where k < 0. Find the value of k. [3]
 - (iii) Find the coordinates of the points where the circle meets the line with equation x + y = 6. [6]

1	$\frac{5}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ $= \frac{5(2 + \sqrt{3})}{4 - 3}$	M1		Multiply top and bottom by $\pm (2 + \sqrt{3})$ $(2 + \sqrt{3})(2 - \sqrt{3}) = 1 \text{ (may be implied)}$
	$= 10 + 5\sqrt{3}$	A1	3 3	$10 + 5\sqrt{3}$
2(i)	1	B1	1	
(ii)	$\frac{1}{2} \times 2^4$	M1		$2^{-1} = \frac{1}{2} \ \underline{\text{or}} \ 32^{\frac{1}{5}} = 2 \ \underline{\text{or}} \ 2^{5} = 32 \ \text{soi}$
		M1		$32^{\frac{4}{5}} = 2^4$ or 16 seen or implied
	= 8	A1	3 4	8
3(i)	$3x - 15 \le 24$ $3x \le 39$	M1		Attempt to simplify expression by multiplying out brackets
	$x \le 13$	A1	2	$x \le 13$
	or $x-5 \le 8 \qquad M1$ $x \le 13 \qquad A1$			Attempt to simplify expression by dividing through by 3
(ii)	$5x^2 > 80$ $x^2 > 16$	M1 B1		Attempt to rearrange inequality or equation to combine the constant terms $x > 4$
	$\begin{vmatrix} x > 4 \\ \text{or } x < -4 \end{vmatrix}$	A1	3	fully correct, not wrapped, not 'and'
				SR B1 for $x \ge 4$, $x \le -4$
			5	

	Ι ,	1		
4	Let $y = x^{\frac{1}{3}}$ $y^2 + 3y - 10 = 0$	*M1		Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	(y-2)(y+5) = 0	DM	1	Correct attempt to solve quadratic
	y = 2, y = -5	A1	L	Both values correct
	$\begin{cases} y - 2, y = 3 \\ x = 2^3, x = (-5)^3 \end{cases}$	DM1		Attempt cube
	x = 8, x = -125	A1 ft		Both answers correctly followed through
	x = 0, x = -125	AII	. 3	Both answers correctly followed through
			5	SR B2 $x = 8$ from T & I
5 (i)		M1		Reflection in either axis
		A1	2	Correct reflection in x axis
(ii)	(1,3)	B1 B1	2	Correct x coordinate Correct y coordinate
				SR B1 for (3, 1)
(iii)	Translation	B1	2	
	2 units in negative x direction	B1	2	
			6	
6 (i)	$2(x^2-12x+40)$	B1		a=2
	$= 2[(x-6)^2 - 36 + 40]$	B1		b = 6
	$= 2[(x-6)^2 + 4]$	M1		$80 - 2b^2$ or $40 - b^2$ or $80 - b^2$ or $40 - 2b^2$
	$= 2(x-6)^2 + 8$	A1	4	(their b) $c = 8$
(ii)	x = 6	B1 ft	1	
(iii)	y = 8	B1 ft	1	
			6	

7(i)	$\frac{dy}{dx} = 5$	B1 1	
(ii)	$y = 2x^{-2}$ $\frac{dy}{dx} = -4x^{-3}$	B1	x^{-2} soi
	$\frac{dy}{dy} = -4x^{-3}$	B1	$-4x^c$
	dx	B1 3	$x^{-2} \text{ soi}$ $-4x^{c}$ kx^{-3}
(iii)	$y = 10x^{2} - 14x + 5x - 7$ $y = 10x^{2} - 9x - 7$	M1 A1	Expand the brackets to give an expression of form $ax^2 + bx + c$ ($a \ne 0$, $b \ne 0$, $c \ne 0$) Completely correct (allow 2 <i>x</i> -terms)
	$\frac{dy}{dx} = 20x - 9$	B1 ft B1 ft 4	1 term correctly differentiated Completely correct (2 terms)
8 (i)	$\frac{dy}{dx} = 9 - 6x - 3x^2$	*M1	Attempt to differentiate y or –y (at least one
	$\frac{1}{dx} = 9 - 6x - 3x$	A1	correct term) 3 correct terms
	At stationary points, $9 - 6x - 3x^2 = 0$	M1	Use of $\frac{dy}{dx} = 0$ (for y or $-y$)
	3(3+x)(1-x) = 0 x = -3 or x = 1	DM1 A1	Correct method to solve 3 term quadratic $x = -3$, 1
	y = 0, 32	A1ft 6	y = 0, 32 (1 correct pair www A1 A0)
(ii)	$\frac{d^2y}{dx^2} = -6x - 6$	M1	Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly
			from $k \frac{dy}{dx}$, or other correct method
	When $x = -3$, $\frac{d^2y}{dx^2} > 0$ When $x = 1$, $\frac{d^2y}{dx^2} < 0$	A1	x = -3 minimum
	When $x = 1$, $\frac{d^2y}{dx^2} < 0$	A1 3	x = 1 maximum
(iii)	-3 < x < 1	M1	Uses the <i>x</i> values of both turning points in inequality/inequalities
		A1 2	Correct inequality or inequalities. Allow ≤
		11	

9 (i)	Gradient = 4	B1	Gradient of 4 soi
	y-7=4(x-2)	M1	Attempts equation of straight line through (2, 7) with any gradient
	y = 4x - 1	A1 3	(=, /) g
(ii)	$ \begin{vmatrix} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ = \sqrt{(2 - 1)^2 + (7 - 2)^2} \end{vmatrix} $	M1	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	A1	$\sqrt{3^2+9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB = 3	B1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	В1	
	$y - \frac{5}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	Attempts equation of straight line through their midpoint with any non-zero gradient
	x + 3y - 8 = 0	A1	$y - \frac{5}{2} = \frac{-1}{3} \left(x - \frac{1}{2} \right)$
		A1 6	x + 3y - 8 = 0
		12	

		T		T
10 (i)	Centre (-1, 2)	B1		Correct centre
	$(x+1)^2 - 1 + (y-2)^2 - 4 - 8 = 0$	M1		Attempt at completing the square
	$(x+1)^2 + (y-2)^2 = 13$	A 1	2	Correct radius
	Radius √13	A1	3	Correct radius
				Alternative method:
				$\frac{\text{Atternative inletifod.}}{\text{Centre } (-g, -f) \text{ is } (-1, 2)}$ B1
				$g^2 + f^2 - c $ M1
				Radius = $\sqrt{13}$ A1
(ii)	$(2)^{2} + (k-2)^{2} = 13$ $(k-2)^{2} = 9$	M1		Attempt to substitute $x = -3$ into circle
	$(k-2)^2 = 9$	3.61		equation
	$k-2=\pm 3$	M1	2	Correct method to solve quadratic
	k = -1	A1	3	k = -1 (negative value chosen)
(iii)	EXTLIED			
	EITHER	M1		Attempt to solve equations simultaneously
	y = 6 - x	M1		Substitute into their circle equation for x/y
	$(x+1)^{2} + (6-x-2)^{2} = 13$ $(x+1)^{2} + (4-x)^{2} = 13$	1011		or attempt to get an equation in 1 variable
	$\begin{vmatrix} (x+1) + (4-x) - 15 \\ x^2 + 2x + 1 + 16 - 8x + x^2 = 13 \end{vmatrix}$			only
	$\begin{vmatrix} x + 2x + 1 + 10 - 8x + x - 15 \\ 2x^2 - 6x + 4 = 0 \end{vmatrix}$	A1		Obtain correct 3 term quadratic
	2(x-1)(x-2) = 0	M1		Correct method to solve quadratic of form
	2(x-1)(x-2)=0	1,111		$ax^2 + bx + c = 0 (b \neq 0)$
	x=1,2	A1		Both x values correct
	$\therefore y = 5, 4$	A1	6	Both y values correct
				<u>or</u>
				one correct pair of values www B1
	OP			second correct pair of values B1
	OR			
	$\begin{vmatrix} x = 6 - y \\ (6 - y + 1)^2 + (y - 2)^2 = 13 \end{vmatrix}$			
	(6-y+1) + (y-2) = 13 $(7-y)^2 + (y-2)^2 = 13$			
	$ \begin{vmatrix} (7-y) + (y-2) - 13 \\ 49 - 14y + y^2 + y^2 - 4y + 4 = 13 \end{vmatrix} $			
	$\begin{vmatrix} 4y - 14y + y + y - 4y + 4 - 13 \\ 2y^2 - 18y + 40 = 0 \end{vmatrix}$			
	2(y-4)(y-5) = 0			
	v = 4, 5			SR
	$\therefore x = 2$, 1			T & I M1 A1 One correct x (or y) value
	,			
				A1 Correct associated coordinate
			12	